These are the currently implemented distributions.
Name | univariateML function | Package | Parameters | Support |
---|---|---|---|---|
Cauchy distribution | mlcauchy |
stats |
location ,scale
|
\(\mathbb{R}\) |
Gumbel distribution | mlgumbel |
extraDistr |
mu , sigma
|
\(\mathbb{R}\) |
Laplace distribution | mllaplace |
extraDistr |
mu , sigma
|
\(\mathbb{R}\) |
Logistic distribution | mllogis |
stats |
location ,scale
|
\(\mathbb{R}\) |
Normal distribution | mlnorm |
stats |
mean , sd
|
\(\mathbb{R}\) |
Beta prime distribution | mlbetapr |
extraDistr |
shape1 , shape2
|
\((0, \infty)\) |
Exponential distribution | mlexp |
stats | rate |
\([0, \infty)\) |
Gamma distribution | mlgamma |
stats |
shape ,rate
|
\((0, \infty)\) |
Inverse gamma distribution | mlinvgamma |
extraDistr |
alpha , beta
|
\((0, \infty)\) |
Inverse Gaussian distribution | mlinvgauss |
actuar |
mean , shape
|
\((0, \infty)\) |
Inverse Weibull distribution | mlinvweibull |
actuar |
shape , rate
|
\((0, \infty)\) |
Log-logistic distribution | mlllogis |
actuar |
shape , rate
|
\((0, \infty)\) |
Log-normal distribution | mllnorm |
stats |
meanlog , sdlog
|
\((0, \infty)\) |
Lomax distribution | mllomax |
extraDistr |
lambda , kappa
|
\([0, \infty)\) |
Rayleigh distribution | mlrayleigh |
extraDistr | sigma |
\([0, \infty)\) |
Weibull distribution | mlweibull |
stats |
shape ,scale
|
\((0, \infty)\) |
Log-gamma distribution | mllgamma |
actuar |
shapelog , ratelog
|
\((1, \infty)\) |
Pareto distribution | mlpareto |
extraDistr |
a , b
|
\([b, \infty)\) |
Beta distribution | mlbeta |
stats |
shape1 ,shape2
|
\((0, 1)\) |
Kumaraswamy distribution | mlkumar |
extraDistr |
a , b
|
\((0, 1)\) |
Logit-normal | mllogitnorm |
logitnorm |
mu , sigma
|
\((0, 1)\) |
Uniform distribution | mlunif |
stats |
min , max
|
\([\min, \max]\) |
Power distribution | mlpower |
extraDistr |
alpha , beta
|
\([0, a)\) |
This package follows a naming convention for the ml***
functions. To access the documentation of the distribution associated with an ml***
function, write package::d***
. For instance, to find the documentation for the log-gamma distribution write
The maximum likelihood estimator of the Lomax distribution frequently fails to exist. For assume \(\kappa\to\lambda^{-1}\overline{x}^{-1}\) and \(\lambda\to0\). The density \(\lambda\kappa\left(1+\lambda x\right)^{-\left(\kappa+1\right)}\) is approximately equal to \(\lambda\kappa\left(1+\lambda x\right)^{-\left(\lambda^{-1}\overline{x}^{-1}+1\right)}\) when \(\lambda\) is small enough. Since \(\lambda\kappa\left(1+\lambda x\right)^{-\left(\lambda^{-1}\overline{x}^{-1}+1\right)}\to\overline{x}^{-1}e^{-\overline{x}^{-1}x}\), the density converges to an exponential density.